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The method of joint probability distribution functions has been generalized in

order to include and treat different sources of error. The probability

distributions of the isomorphous pairs (Ep, Ed) and of the two triples (Eph, Epk,

Epk, Eph+k, Edh, Edk, Edh+k) are obtained, on the assumption that the lack of

isomorphism and the errors in measurements cumulate on the Ed variables. The

conditional distributions of the two-phase and the three-phase structure

invariants are derived, showing how the reliability of the probabilistic estimates

depends on the errors.

1. Notation

fj: scattering factor of the jth atom

�p;�d;�H �
P

f 2
j , where the summation is extended to the

protein atoms, to the derivative and to the heavy-atom

structure

� � ��p=�d�1=2

Zj: atomic number of the jth atom

�3d;�3p;�3h �
P

fj�h1�fj�h2�fj�h3�, where the summation is

extended to derivative, native protein and heavy atoms,

respectively. As usual for direct-methods applications, we

will approximate the ratio ��3=2=�3� by ��3=2
2 =�3�, where

�n �
P

Zn
j

Fp �
PN

j�1 fj exp�2�ihrj� � jFpj exp�i'p�: structure factor of

the native protein

Ep � Ap � iBp � Rp exp�i'p� � Fp=�
1=2
p : normalized struc-

ture factor of the native protein

FH �
P

fj exp�2�ihrj� � jFHj exp�i'H�: structure factor of the

heavy-atom structure

Fd � Fp � FH � jFdj exp�i'd�: structure factor of the deriva-

tive

Ed � Ad � iBd � Rd exp�i'd� � Fd=�
1=2
d : Ed is the normalized

structure factor of the derivative

� � 'd ÿ 'p

�p � 'p1 � 'p2 � 'p3: triplet invariant of the native protein.

The subscripts `pi' stand for `phi', under the condition that

h1 � h2 � h3 � 0. A similar notation holds for the subscripts

`di'

2. Introduction

Isomorphous-replacement techniques and direct methods

were ®rst integrated by Hauptman (1982), who initiated the

probabilistic theories of two-phase and three-phase structure

invariants for isomorphous pairs. In his approach, the reci-

procal vectors are the primitive random variables, so that Ep

and Ed, being functions of the primitive variables, are them-

selves random variables. In particular, the joint probability

distributions

P�Ep;Ed�; �1�

P�Ep1;Ep2;Ep3;Ed1;Ed2;Ed3� �2�
were obtained, from which the conditional distributions

P��jRp;Rd� �3�
and

P��jRp1;Rp2;Rp3;Rd1;Rd2;Rd3� �4�
were respectively derived. The ®rst application of the method

(Hauptman et al., 1982) on error-free data was successful, but

lack of isomorphism proved to be a strong obstacle when the

technique was applied to real data.

The approach was revisited by Giacovazzo et al. (1988):

their mathematical approach used the atomic coordinates as

primitive random variables and took full account of the

resolution effects on the distribution parameters. When

applied to the case `native protein±heavy-atom derivative', the

®nal formula estimating the triplet phase of the native protein

assumes a very simple expression:

P��p� � �2�I0�G��ÿ1 exp�G cos �p�; �5�
where

G � 2��3=�
3=2
2 �pRp1Rp2Rp3 � 2��3=�

3=2
2 �H�1�2�3; �6�

I0�x� is the modi®ed Bessel function of order zero and
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� � �jFdj ÿ jFpj�
���H�1=2

is the pseudo-normalized difference (with respect to the

heavy-atom structure).

A more recent series of papers (Giacovazzo et al., 1994,

1995, 1996; Giacovazzo & Siliqi, 1997) made the direct-

methods treatment of the single-isomorphous-replacement

(SIR) case practicable and more competitive with the classical

technique even when applied to real diffraction data. The aim

of the proposed procedure was to phase protein data directly

by application of the joint probability distribution (5) rather

than by the classical two-step method (e.g. Blow & Crick, 1959;

Terwillinger & Eisenberg, 1987), requiring ®rst the recovery of

the heavy-atom positions and then using this information for

phasing protein data.

Distributions (3)±(5) present a weak point: they were

obtained by assuming that there is no error in the measure-

ments and that no lack of isomorphism occurs. This assump-

tion is rather limiting for practical applications, mostly when

the lack of isomorphism is severe. In this paper, we are

interested in deriving the distributions (1)±(5) under the

following hypothesis:

jFdj exp�i'd� � jFpj exp�i'p� � jFH j exp�i'H� � j�j exp�i��;
�7�

where j�j exp�i�� represents the cumulative error due to lack

of isomorphism and to errors in measurements. We will

assume, in the absence of any other prior information, that

h�i � 0

while � is a variable uniformly distributed between 0 and 2�.

Equation (7) cumulates the full error on the derivative:

accordingly,

hjFdj2i � hjFpj2i � hjFHj2i � hj�j2i � �d � hj�j2i: �8�

3. The joint probability distribution P(Ep, Ed) in P1 and
related distributions

Let us assume that: (a) the atomic positions of the native

protein are the primitive random variables of our probabilistic

approach; (b) the assumption (8) holds. Then the character-

istic function of the distribution (3) may be written as

C�up; vp; ud; vd� � hexp i�upAp � vpBp � udAd � vdBd�i
� expfÿ 1

4 �u2
p � v2

p � �1� �2
���u2

d � v2
d�

� 2�upud � 2�vpvd�g; �9�

where up, vp, ud and vd are carrying variables associated with

Ap, Bp, Ad and Bd, respectively, and �2
� � hj�j2i=�d. The

Fourier transform of (9) gives

P�Ap;Ad;Bp;Bd�

� �2��ÿ4
R�1
ÿ1

. . .
R�1
ÿ1

exp ÿiTU
ÿ �

exp�ÿ 1
2 �UKU�� dU

� �2��ÿ2���ÿ1=2 exp�ÿ 1
2 TKÿ1T�;

where

T � �Ap;Ad;Bp;Bd�; U � �up; ud; vp; vd�;

K �
1=2 �=2 0 0

�=2 �1� �2
��=2 0 0

0 0 1=2 �=2

0 0 �=2 �1� �2
��=2

��������
��������;

� � det�K� � 2ÿ4q2;

q � 1� �2
� ÿ �2:

�ij are the elements of Kÿ1, given by

�11 � �33 � 2�1� �2
��=q;

�22 � �44 � 2=q;

�12 � �34 � ÿ2�=q;

�13 � �14 � �23 � �24 � 0:

Accordingly,

P�Ap;Ad;Bp;Bd�
� ��2q�ÿ1 exp

n
ÿ 1

q
��A2

p � B2
p��1� �2

�� � �A2
d � B2

d�

ÿ 2��ApAd � BpBd��
o
:

The change of variables

Ap � Rp cos 'p

Bp � Rp sin 'p

�
Ad � Rd cos 'd

Bd � Rd sin 'd

�
leads to

P�Rp;Rd; 'p; 'd�
� �RpRd=��2q�� exp

n
ÿ 1

q
�R2

p�1� �2
�� � R2

d

ÿ 2�RpRd cos�'d ÿ 'p��
o
: �10�

The marginal distribution

P��jRp;Rd� � �2�I0�Q��ÿ1 exp�Q cos ��
is easily obtained, where

Q � 2�RpRd=q:

Accordingly,

hcos �jRp;Rdi � I1�Q�=I0�Q�:
It may be observed that the expected value of cos � decreases

with increasing value of q (and, therefore, of hj�j2i). The

marginal distribution of the structure-factor moduli is

obtained by integrating (10) over the values of the 'd and 'p:



P�Rp;Rd� � ��4RpRd�=q� exp�ÿ�R2
p � R2

d�=q�
� I0��2�Rp � Rd�=q�:

The relation (10) reduces to Hauptman's results when

hj�j2i � 0:

4. The joint probability distribution P(Ep1, Ep2, Ep3, Ed1,
Ed2, Ed3)

The characteristic function of the joint probability distribution

P�Ep1;Ep2;Ep3;Ed1;Ed2;Ed3� is

C�up1; up2; up3; ud1; ud2; ud3; vp1; . . . ; vd3�
� hexp i�up1Ap1 � up2Ap2 � . . .� vd2Bd2 � vd3Bd3�i

� exp

�
ÿ 1

4

P3

i�1

��u2
pi � v2

pi� � �1� �2
�i��u2

di � v2
di�

� 2�i�upiudi � vpivdi�� ÿ �i=4���3=�
3=2
2 �p

� ��up1up2up3 ÿ vp1vp2up3 ÿ vp1up2vp3 ÿ up1vp2vp3�
� �1�ud1up2up3 ÿ vd1vp2up3 ÿ vd1up2vp3 ÿ ud1vp2vp3�
� �2�up1ud2up3 ÿ vp1vd2up3 ÿ vp1ud2vp3 ÿ up1vd2vp3�
� �3�up1up2ud3 ÿ vp1vp2ud3 ÿ vp1up2vd3 ÿ up1vp2vd3�
� �1�2�ud1ud2up3 ÿ vd1vd2up3 ÿ vd1ud2vp3 ÿ ud1vd2vp3�
� �1�3�ud1up2ud3 ÿ vd1vp2ud3 ÿ vd1up2vd3 ÿ ud1vp2vd3�
� �2�3�up1ud2ud3 ÿ vp1vd2ud3 ÿ vp1ud2vd3 ÿ up1vd2vd3��
ÿ �i=4���3=�

3=2
2 �d�ud1ud2ud3 ÿ vd1vd2ud3 ÿ vd1ud2vd3

ÿ ud1vd2vd3�
�
; �11�

where up1, up2, up3, ud1, ud2, ud3, vp1, vd3 are carrying variables

associated with Ap1, Ap2, Bd3 and �i � �
P

p �hi�=
P

d �hi��1=2.

The change of variables

upj � 21=2�pj cos pj

vpj � 21=2�pj sin pj

Apj � Rpj cos 'pj;

Bpj � Rpj sin 'pj;

udj � �2=�1� �2
�j��1=2�dj cos �dj

vdj � �2=�1� �2
�j��1=2�dj sin dj;

Adj � Rdj cos 'dj;

Bdj � Rdj sin 'dj

and the Fourier transform of (11) leads to

P�Rp1;Rp2; . . . ;Rd3; 'p1; . . . ; 'd3�

� ��ÿ6=t�Q3
i�1

�RpiRdi�

exp

�P3

i�1

�1=�1ÿ �2
i ��fÿR2

pi ÿ �R2
di=�1� �2

�i��

� 2�0iRpiRdi cos�'di ÿ 'pi�g
� 2�0Rp1Rp2Rp3 cos�'p1 � 'p2 � 'p3�
� 2�11Rd1Rp2Rp3 cos�'d1 � 'p2 � 'p3�
� 2�12Rp1Rd2Rp3 cos�'p1 � 'd2 � 'p3�
� 2�13Rp1Rp2Rd3 cos�'p1 � 'p2 � 'd3�
� 2�21Rp1Rd2Rd3 cos 'p1 � 'd2 � 'd3

ÿ �
� 2�22Rd1Rp2Rd3 cos�'d1 � 'p2 � 'd3�
� 2�23Rd1Rd2Rp3 cos�'d1 � 'd2 � 'p3�
� 2�33Rd1Rd2Rd3 cos�'d1 � 'd2 � 'd3�

� 2��3=�
3=2
2 �pRp1Rp2Rp3 cos�'p1 � 'p2 � 'p3�

�
; �12�

where

t � Q3
i�1

��1ÿ �2
i ��1ÿ �2

�i�1=2�ÿ1;

�i � �i=�1� �2
�i�1=2; �0i � �i=�1� �2

�i�1=2;

�0 � ÿK�1�2�3; �11 � K�2�3=�1� �2
�1�1=2;

�12 � K�1�3=�1� �2
�2�1=2; �13 � K�1�2=�1� �2

�3�1=2;

�21 � ÿK�1=��1� �2
�2��1� �2

�3��1=2;

�22 � ÿK�2=��1� �2
�1��1� �2

�3��1=2;

�23 � ÿK�3=��1� �2
�1��1� �2

�2��1=2;

�33 � K=��1� �2
�1��1� �2

�2��1� �2
�3��1=2;

K � ��3=�
3=2
2 �H

Y3

i�1

�i

1ÿ �2
i

P
H �hi�P
p �hi�

" #1=2

: �13�

From (12), the following conditional probability distribution

may be derived:

P��pjRp1; . . . ;Rd3� � �2�I0�G��ÿ1 exp�G cos �p�;
where

G � 2��3=�
3=2
2 �pRp1Rp2Rp3 � 2

�
�0Rp1Rp2Rp3

� �11

Rd1Rp2Rp3

�1� �2
�1�1=2

� �12

Rp1Rd2Rp3

�1� �2
�2�1=2

� �13

Rp1Rp2Rd3

�1� �2
�3�1=2

� �23

Rd1Rd2Rp3

��1� �2
�1��1� �2

�2��1=2

� �22

Rd1Rp2Rd3

��1� �2
�1��1� �2

�3��1=2

� �21

Rp1Rd2Rd3

��1� �2
�2��1� �2

�3��1=2

� �33

Rd1Rd2Rd3

��1� �2
�1��1� �2

�2��1� �2
�3��1=2

�
:
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Table 1
Statistical analysis of the triplet phase error �hj�'ji� at selected values of
G.

The value of � �'
�� ��
 �� is calculated over all the Nr triplets with G larger than

THRES.

M-FABP (equation 6) AZET M-FABP (equation 15)

THRES Nr �hj�'ji� Nr �hj�'ji� Nr �hj�'ji�
0.4 50000 72.14 10066 52.63 21027 69.31
0.8 49393 72.04 5630 46.30 16147 68.09
1.6 14298 68.28 592 31.44 1089 62.30
2.6 1755 65.94 41 24.46 50 59.52
3.8 169 65.07 0 0.00 2 104.00
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According to (13), G reduces to

G � 2��3=�
3=2
2 �pRp1Rp2Rp3 � 2K

Rd1

�1� �2
�1�1=2

ÿ �1Rp1

 !

� Rd2

�1� �2
�2�1=2

ÿ �2Rp2

� �
Rd3

�1� �2
�3�1=2

ÿ �3Rp3

� �
� 2��3=�

3=2
2 �pRp1Rp2Rp3 � 2��3=�

3=2
2 �H

�
Y3

i�1

1

�1� �2
�i ÿ �2

i �
P

H �hi�P
d �hi�

�i

� �
: �14�

The approximation introduced into (14) consists in replacing

(in the denominator) the term �Pd �hi�
P

p �hi��1=2 by
P

d �hi�,
where �i � �Fdi ÿ Fpi�=��H�1=2 is a pseudo-normalized

difference (with respect to the heavy-atom structure). Equa-

tion (14) is the desired expression estimating triplet invariant

phases when errors are considered.

A simpler expression may be obtained by observing that

�1� �2
�i ÿ �2�ÿ1��H=�d� � �H=��H ��d�

2
��

� �1� hj�j2i=�H�ÿ1:

Then,

G � 2��3=�
3=2
2 �pRp1Rp2Rp3 � 2��3=�

3=2
2 �H

� �1�2�3

�1� ��2
�1�H ��1� ��2

�2�H ��1� ��2
�3�H �

; �15�

where ��2
��H � hj�j2i=�H.

Equation (15) suggests how the error in¯uences the relia-

bility of the triplet estimate. It may be noted that, besides the

ismorphous differences �jFdj ÿ jFpj�, also the average errors

hj�j2i are pseudo-normalized with respect to the heavy-atom

substructure. In other words, the ratio hj�j2i=�H, rather than

the absolute value of hj�j2i, is the factor responsible for the

accuracy of triplet phase relationships. This agrees with

common sense: even quite a small hj�j2i value may be critical

if the scattering power of the heavy-atom substructure is a

very small percentage of the derivative scattering power.

Equation (15) reduces to (6) when errors are vanishing. It may

also be noted that the Cochran term remains unaffected by the

error (in accordance with the assumption that the errors

accumulate on the Fd's).

5. Conclusions

The method of the joint probability distributions has been

applied to isomorphous pairs and isomorphous triplet invari-

ants to treat different sources of error. Our calculations show

how they in¯uence the terms Q and G, representing the

concentration parameters of the phase distributions for

isomorphous pairs and for triplets, respectively.

The assumptions on which our theoretical results are based

cannot be strictly veri®ed at this stage. Indeed, we assumed in

(7) and (8) that � is the so-called `closure error vector', that is,

� � Fd ÿ �Fp � FH�;

cumulating errors due to lack of isomorphism, errors in the

heavy-atom structure model and errors in the measurements.

The theory so far developed does not exploit FH as prior

information: to take this supplementary information into

account, we should have studied the distribution

P�Ep;EdjEH� �16�
rather than P�Ep;Ed�, where Ep, Ed and EH may represent

triplets of re¯ections, e.g.

Ep � �Eph1
;Eph2

;Eph3
�; Ed � �Edh1

;Edh2
;Edh3
�;

EH � �EHh1
;EHh2

;EHh3
�

with h1 � h2 � h3 � 0. Accordingly, at this stage of the theory,

the measurement errors are the only (and often minor)

component of �. What one can expect from (15) is not an

improvement of the triplet phase estimates (indeed the use of

the � factors does not change the signs of the �'s) but only an

assessment of their reliability on a more reasonable footing.

Actually, (6) strongly overestimates the reliability of the

triplet phases involving isomorphous differences. In Table 1,

we show (®rst three columns) a statistical analysis of the

average phase error versus selected G values [calculated

according to (6)] for the protein M-FABP (Zanotti et al.,

1992). In columns 4 and 5 of the same table, we show a similar

analysis for the triplets of a typical small crystal structure

(AZET; Colens et al., 1974); only the classical Cochran

contribution was used to estimate triplet reliability. It is

evident that, at the same THRES value, the triplet phase

errors for AZET are markedly lower. The use of (15) (see the

last two columns of Table 1) still overestimates M-FABP

triplet reliability: in order to compensate for the lack of

isomorphism, the cumulative error �2 in (15) was assumed to

be ten times the measurement error.

We conclude with the following remarks:

(a) Equation (15) is the ®rst example of a reliability par-

ameter, estimating triplet invariants from isomorphous

differences, able to incorporate errors of different natures.

(b) The theoretical results so obtained are preliminary to

the more ambitious task of calculating (16). The scenario in

which (16) should be applied is the following: (15) provides

triplet estimates that, involved in a tangent procedure, should

be able to generate useful electron-density maps without any

information on the heavy-atom positions. However, once

phases are available, a difference Fourier synthesis with

coef®cient �Fd ÿ Fp� exp�i'p� may automatically provide

approximate heavy-atom structure parameters that can be

re®ned by standard techniques. Then the subsequent use of

(16) would be able to improve the triplet phase estimates and

therefore lead, via a tangent approach, to improved protein

electron density. The process should be completely auto-

mated.
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